Multi-view Generative Adversarial Networks

نویسندگان

  • Mickaël Chen
  • Ludovic Denoyer
چکیده

Learning over multi-view data is a challenging problem with strong practical applications. Most related studies focus on the classification point of view and assume that all the views are available at any time. We consider an extension of this framework in two directions. First, based on the BiGAN model, the Multi-view BiGAN (MV-BiGAN) is able to perform density estimation from multi-view inputs. Second, it can deal with missing views and is able to update its prediction when additional views are provided. We illustrate these properties on a set of experiments over different datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Super-Resolution for Overhead Imagery Using DenseNets and Adversarial Learning

Recent advances in Generative Adversarial Learning allow for new modalities of image super-resolution by learning low to high resolution mappings. In this paper we present our work using Generative Adversarial Networks (GANs) with applications to overhead and satellite imagery. We have experimented with several state-ofthe-art architectures. We propose a GAN-based architecture using densely con...

متن کامل

Generative Multi-Adversarial Networks

Generative adversarial networks (GANs) are a framework for producing a generative model by way of a two-player minimax game. In this paper, we propose the Generative Multi-Adversarial Network (GMAN), a framework that extends GANs to multiple discriminators. In previous work, the successful training of GANs requires modifying the minimax objective to accelerate training early on. In contrast, GM...

متن کامل

Multi-View Image Generation from a Single-View

This paper addresses a challenging problem – how to generate multi-view cloth images from only a single view input. To generate realistic-looking images with different views from the input, we propose a new image generation model termed VariGANs that combines the strengths of the variational inference and the Generative Adversarial Networks (GANs). Our proposed VariGANs model generates the targ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017